
Exam A&DinC, with answers Friday, April 10, 2015, 9 - 12 h.

Your personal information (10 points)

Name:

Student Number:

Study Program:

Exam instructions
– please read carefully –

• Please write your name, student number, and study program on this page.

• The first part of the exam consists of 13 multiple choice questions. Read carefully
each question and the four options, and select the option that answers the question
correctly. When more than one option answers the question correctly, select the
most informative option.
Your should provide your answers for the multiple choice questions on a separate
multiple choice form. Do not forget to write your name and student number on
that form.

• The second part of the exam consists of 3 open problems. Write your answers in
the boxes below the problems. If you need additional space, use the last page of the
exam, and provide a reference to the problem.

• Your exam grade is computed as follows. You obtain 10 points for filling in your
personal information on this page. For n correct answers to the multiple choice
questions, you will earn max(3n− 9, 0) points. So the maximal number of points for
the multiple choice questions is 30, and any wrong or missing answer will cost you
3 points. For each of the 3 open problems you can earn maximally 20 points. Your
exam grade is p/10 where p is the number of points you earned.

This is a version of the exam with answers. The correct answers
to the multiple choice questions are printed in boldface.

Algorithms and Data Structures in C page 2 of 9 Friday, April 10, 2015

Part I: Multiple Choice Questions

1. Consider the following definition of the type Stack:

typedef struct Stack {
int *array;
int top;
int size;

} Stack;

The top of a Stack is the index of the first free position in array, so e.g. in an empty stack
we have top==0. The function push is defined by

1 void push (int value, Stack *stp) {
2 if (stp->top == stp->size) {
3 doubleStackSize(stp);
4 }
5 stp->top++;
6 stp->array[stp->top] = value;
7 }

Which of the following is correct?

A. This is a correct definition of push.

B. When lines 2-4 are moved to the end of the function definition, this is a correct
definition of push.

C. When lines 5 and 6 are interchanged, this is a correct definition of push.

D. When lines 2-4 are moved to the end of the function definition and lines 5 and 6 are
interchanged, this is a correct definition of push.

2. The function findInList() is defined by

1 int findInListIt(List li, int n) {
2 while (???) {
3 li = li->next;
4 }
5 if (li == NULL) {
6 return 0;
7 } else {
8 return 1;
9 }

10 }

What should replace the ??? part in line 2 in order to obtain a correct function?

A. li != NULL && li->item != n

B. li != NULL || li->item != n

C. li->item != n && li != NULL

D. li->item != n || li != NULL

Algorithms and Data Structures in C page 3 of 9 Friday, April 10, 2015

3. Consider the following grammar:

〈code〉 ::= 〈word〉 〈number〉 .

〈number〉 ::= 〈digit〉 { 〈digit〉 } .

〈word〉 ::= [〈capital〉] { 〈lowercase〉 } .

〈capital〉 ::= ’A’ | ’B | ’C’ .

〈lowercase〉 ::= ’a’ | ’b’ | ’c’ .

〈digit〉 ::= ’0’ | ’1’ | ’2’ | ’3’ .

Which string is not a production of 〈code〉?
A. ab13

B. ABc0311

C. 123

D. Aaa2

4. Let G be an ambiguous grammar. Which of the following statements is correct?

A. For some strings, it is not certain whether they can be produced by G.

B. Some strings can be produced by G in more than one way.

C. Recognizing whether a string is produced by G is problematic, since G is ambiguous.

D. The evaluation of strings produced by G is possible thanks to the ambiguity of G.

5. We consider the array representation of binary trees where the root has index 1. Which of the
following statements is correct?

A. The children of a node with index n have index 2n + 1 and 2n + 2.

B. The parent of a node with index n > 1 has index n div 2.

C. If m < k < n and there are nodes with indices m and n, then there is a node with
index k.

D. For every k less that the height of the tree, there is a node with index 2k.

6. Let T be a binary search tree containing integers, with n nodes and height h. Which of the
following statements is wrong?

A. Inorder traversal of T yields the integers in ascending order.

B. Deciding whether value x occurs in T can be done in O(h) time.

C. If node k contains x and node l is a right descendant of k that contains y, then x < y.

D. h is in O(log(n)).

Algorithms and Data Structures in C page 4 of 9 Friday, April 10, 2015

7. The function recognizeExpression is defined by

void recognizeExpression() {
char *ar = readInput();
List tl = tokenList(ar);
if (acceptExpression(&tl)) {

printf("this is an expression\n");
} else {

printf("this is not an expression\n");
}
free(ar);
freeTokenList(tl);

}

So it reads an input string, transforms it into a token list, and checks whether the token list
represents an expression. It uses the function with prototype int acceptExpression(List

*lp); that scans through the token list referred to by lp and indicates whether it has observed
an expression.

A. This is a correct definition.

B. This is not a correct definition: it will accept strings that are not expressions (e.g.
42))*(+).

C. This is not a correct definition: it will lead to memory leaks.

D. This is not a correct definition: it will accept strings that are not expres-
sions (e.g. 42))*(+), and it will lead to memory leaks.

8. We use the array representation of binary trees where the root has index 1. Consider the
following definition of the function upheap:

1 void upheap (Heap *hp, int n) {
2 if (??? && hp->array[n] > hp->array[n/2]) {
3 swap(&(hp->array[n]),&(hp->array[n/2]));
4 upheap(hp,n/2);
5 }
6 }

It uses the function swap that interchanges the values referred to by its arguments. What
should replace the ??? part in line 2 in order to obtain a correct function?

A. n!=0

B. n>0

C. n>1

D. n>2

Algorithms and Data Structures in C page 5 of 9 Friday, April 10, 2015

9. Which statement about the algorithm Heapsort is correct?

A. Its time complexity is O(n).

B. Its time complexity is O(n log(n)).

C. Its time complexity is O(n
√
n).

D. Its time complexity is O(n2).

10. Let a collection W of m > 1 words be given, with n the sum of the lengths of the words. Let
ST be a standard trie for W, and CT a compressed trie (i.e. a trie where every node except the
root contains a nonempty string). Which of the following statements is wrong?

A. CT contains no nodes with branching degree 1, while ST may contain such nodes.

B. The number of nodes in ST is in O(n), while CT has at most 2m nodes.

C. The memory required for ST is in O(n), while for CT it is in O(m).

D. ST and CT have the same number of leaves.

11. Let T be a text with length n, and let ST be the suffix trie for text T. Moreover, let P be a
pattern with length m. Which of the following statements is wrong?

A. ST has at most 2n nodes.

B. The memory required for ST is in O(n).

C. P occurs in T if and only if there is a path in ST from the root to a leaf
that corresponds with P.

D. ST enables checking whether P occurs in T in O(m) time.

12. Which of the following statements about connected graphs is correct?

A. Every two nodes are connected by a path.

B. There is an edge between every pair of different nodes.

C. (number of edges) ≥ (number of nodes).

D. When a graph is not connected, there may be edges that are not connected to any
node.

13. Which of the following statements about graphs is correct?

A. The number of nodes with even degree is even.

B. The number of nodes with even degree is odd.

C. The number of nodes with odd degree is even.

D. The number of nodes with odd degree is odd.

Algorithms and Data Structures in C page 6 of 9 Friday, April 10, 2015

Part II: Open Questions

1. 20 points The type List is defined by

typedef struct ListNode *List;

struct ListNode {
int item;
List next;

};

Define a C function with prototype List removeItemAndNext(List li, int n); that re-
moves the first occurrence of value n in list li and also removes the next item in the list.
When n does not occur in the list, nothing happens. When n only occurs at the end of the list,
only that occurrence is removed. Do not forget to free memory whenever required, so that no
memory leaks arise.

Solution:

/**** recursively ****/
List removeItemAndNextRec(List li, int n) {

List returnList = NULL;
if (li == NULL) {

return li;
}
if (li->item == n) {

if (li->next != NULL) {
returnList = (li->next)->next;
free(li->next);

}
free(li);
return returnList;

}
li->next = removeItemAndNextRec(li->next,n);
return li;

}

Algorithms and Data Structures in C page 7 of 9 Friday, April 10, 2015

/**** with an auxiliary function ****/

List removeFirstNode(List li) { /* precondition: li != NULL */
List returnList = li->next;
free(li);
return returnList;

}

List removeItemAndNext(List li, int n) {
if (li == NULL) {

return li;
}
if (li->item == n) {

li = removeFirstNode(li);
if (li == NULL) {

return li;
}
return removeFirstNode(li);

}
li->next = removeItemAndNext(li->next,n);
return li;

}

/**** iteratively ***/
List removeItemAndNext(List li, int n) {

List prev = NULL;
List loc = li;
while (loc != NULL && loc->item != n) {

prev = loc;
loc = loc->next;

}
if (loc != NULL) { /* so loc->item == n */
if (prev != NULL) {

prev->next = loc->next;
} else {

li = loc->next;
}
if (loc->next != NULL) {

if (prev != NULL) {
prev->next = loc->next->next;

} else {
li = loc->next->next;

}
free(loc->next);

}
free(loc);

}
return li;

}

Algorithms and Data Structures in C page 8 of 9 Friday, April 10, 2015

2. 20 points The type Tree is defined by

typedef struct TreeNode *Tree;

struct TreeNode {
int item;
Tree leftChild, rightChild;

};

Define a C function with prototype Tree mirrorCopy(Tree t); that makes a mirror copy
of its argument. This is a copy in which for every node the left child and the right child are
interchanged. Your function should leave the argument unchanged.

Solution:

Tree mirrorCopy(Tree t) {
Tree tNew = NULL;
if (t != NULL) {

tNew = malloc(sizeof(struct TreeNode));
assert(tNew != NULL);
tNew->item = t->item;
tNew->leftChild = mirrorCopy(t->rightChild);
tNew->rightChild = mirrorCopy(t->leftChild);

}
return tNew;

}

Algorithms and Data Structures in C page 9 of 9 Friday, April 10, 2015

3. 20 points Define in pseudocode an algorithm CycleCheck that checks whether a connected

simple graph contains a proper cycle (i.e. a cycle in which no two edges are equal). Hint :
consider a variant of Depth-First Search.

Solution:

algorithm CycleCheck(G)
input connected simple graph G
output YES if G contains a proper cycle, otherwise NO
let v be a node of G
return CycleCheck(G,v)

algorithm CycleCheck(G,v)
input connected simple graph G with node v
output YES if G contains a proper cycle, otherwise NO
give v the label VISITED
forall unlabeled e incident with v do

w ← the other node incident with e
if w has label VISITED then /∗ we have a cycle! ∗/

return YES
/∗ new node discovered ∗/
give e the label NEW
if CycleCheck(G,w) then

return YES
return NO

